

Certificate #4240.01

Page 1 of 9

Test Number: NOAL 19-1049

Test Method: ASTM E90-09 (2016): Laboratory Measurement of Airborne Sound Transmission of Building Partitions and Elements

Result Summary: STC 68

Test Date: October 31, 2019

Specimen: Wall Assembly

Test Site: North Orbit Acoustic Laboratory Facility
512 5th Street NW
Dyersville, IA 52040

Report Date: December 19, 2019

Prepared For
CEMCO
13191 Cross Road Parkway, Suite 325 City of Industry, CA 91746

Technician: D. Berg

Prepared by:
David M. Berg
North Orbit Acoustic Laboratories
P.O. Box 6948
Minneapolis, MN 55406

ELECTRONICALLY
REPRODUCED
SIGNATURE

David M Berg
Laboratory Manager

ELECTRONICALLY
REPRODUCED
SIGNATURE

Heide Gross
Laboratory Quality Manager

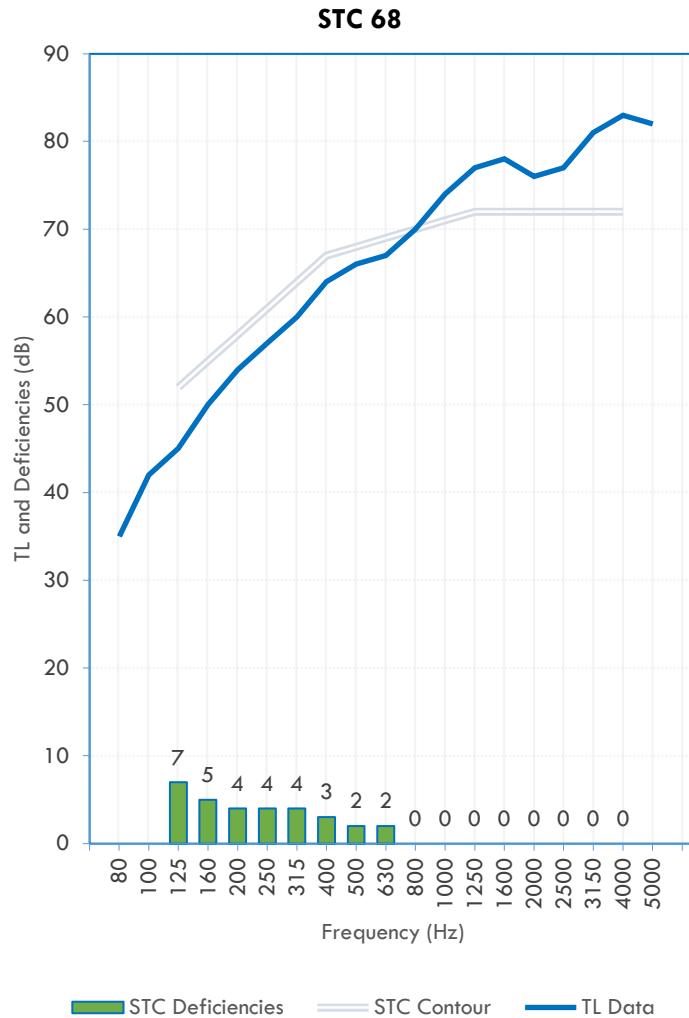
P.O. Box 6948, Minneapolis MN 55406-0948

Prepared For: CEMCO

13191 Cross Road Parkway, Suite 325 City of Industry, CA 91746

Test Date: October 31, 2019

Report Date: December 19, 2019



Certificate #4240.01

Test Number: NOAL 19-1049

Page 2 of 9

Frequency (Hz)	TL (dB)	Deficiencies (dB)
80	35	
100	42	
125	45	7
160	50	5
200	54	4
250	57	4
315	60	4
400	64	3
500	66	2
630	67	2
800	70	0
1000	74	0
1250	77	0
1600	78	0
2000	76	0
2500	77	0
3150	81	0
4000	83	0
5000	82	
Total Deficiencies	31	

ASSEMBLY ELEMENTS:

(From Source Room Side to Receive Room Side)

Sheathing 5/8" Type X gypsum wallboard (vs); 1.625" #6 type S screws spaced 12" OC at perimeter except top and 16" OC in field

Sheathing 5/8" Type X gypsum wallboard (v); 1" #6 type S screws spaced 8" OC at perimeter except top and 12" OC in field

Framing Double row 2-1/2" CEMCO Viper-X (VXS) 18 mil (20 EQ) studs (1" AS) spaced 24" OC

Insulation Double layer 3-1/2" fiberglass insulation batts (R13)

Sheathing 5/8" Type X gypsum wallboard (vs); 1" #6 type S screws spaced 8" OC at perimeter except top and 12" OC in field

Sheathing 5/8" Type X gypsum wallboard (v); 1.625" #6 type S screws spaced 12" OC at perimeter except top and 16" OC in field

CEMCO HOTROD XL fire-rated wall mount deflection bead at sample top on both source and receiver side
No other seals/sealant used at sample top.

See Appendix C on pages 6 and 7 for a full description of Assembly Elements

P.O. Box 6948, Minneapolis MN 55406-0948

Prepared For: CEMCO

13191 Cross Road Parkway, Suite 325 City of Industry, CA 91746

Test Date: October 31, 2019

Report Date: December 19, 2019

Test Number: NOAL 19-1049

Page 3 of 9

SPECIMEN DESCRIPTION

The specimen is a wall assembly and its elements are described below with results on page 2. Detailed information regarding the specimen is found in Appendix C on pages 6 and 7.

INSTALLATION AND DISPOSITION

The wall assembly was originally constructed on October 31, 2019 at the Dyersville acoustic laboratory location.

Qualified representatives from North Orbit Acoustic Laboratories observed the installation process and inspected all major building elements when completed and prior to testing.

FILLER WALL

A high transmission loss double stud filler wall was constructed in the entire 20' x 12' test opening. The filler wall consisted of two 1.5" x 7.5" x 12' wood bottom and top plates separated by approximately 3" of air space. 1.5" x 3.5" wood studs were placed at 24" OC in each frame. The resulting cavity was filled entirely with fiberglass batt insulation. Four layers of Type C gypsum wall board (GWB) were attached to the outside of the frames on both sides. The GWB on the north side of the filler is mounted on resilient clips and 7/8" hat channel at 16" OC. The GWB on the south side is directly attached to the frame. The filler wall assembly was tested and the results retained for use in composite wall corrections. The filler wall was then modified to provide a 12' x 8' decoupled opening to accommodate tests in this series.

TEST METHODS

Methods follow the published standards listed below. All values derived from single-direction transmission loss measurements.

ASTM E90-09 (2016): Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements

ASTM E413-16: Classification for Rating Sound Insulation

All results reported herein were derived from tests performed in full accordance with test method ASTM E90-09 (2016). The laboratory and measurement systems fully meet all requirements of the test standard and the requirements of ASTM E90-09 (2016) Annex A2: Qualification of room sound fields and microphone systems used for sampling.

North Orbit Acoustic Laboratory (NOAL) is accredited through A2LA certificate number 4240.01 for this test procedure. This test report relates only to the item(s) tested. This report shall not be used to claim product certification, approval, or endorsement by North Orbit Acoustic Laboratories or A2LA.

CONFIDENTIALITY

The client has full control over this information and any release of information will be only to the client. The specific testing results are deemed to be confidential exclusively for the client's use. Reproduction of this report, except in full, is prohibited.

P.O. Box 6948, Minneapolis MN 55406-0948

Prepared For: CEMCO

13191 Cross Road Parkway, Suite 325 City of Industry, CA 91746

Test Date: October 31, 2019

Report Date: December 19, 2019

Test Number: NOAL 19-1049

Page 4 of 9

APPENDIX A: MEASUREMENT SETUP

ENVIRONMENT

Temperature: 66.0 °F [18.9 °C]
Relative Humidity: 57.2%

SPECIMEN AREA

Specimen Area: 96.0 ft² [8.9 m²]

CHAMBER VOLUME - AIRBORNE TRANSMISSION

Source Room 7,134.0 ft³ [202.0 m³]
Receiver Room 7,749.8 ft³ [219.4 m³]

INSTRUMENTATION

Description	Brand	Model	Serial
Analyzer	Sinus	Apollo	7510
Software	Sinus	Samurai	ver. 2.8.3
Microphone	Brüel & Kjær	4166	1620281
Microphone	Brüel & Kjær	4166	1620312
Preamplifier	Brüel & Kjær	2669	2025373
Preamplifier	Brüel & Kjær	2669	2083679
Rotating Boom	Brüel & Kjær	3923	2736620
Rotating Boom	Brüel & Kjær	3923	2705113
Calibrator	Brüel & Kjær	4231	2416109
Loudspeaker	Mackie	SA1501	PP14915
Loudspeaker	Mackie	SA1501	PP14940
Thermohygrometer	Digi-Sense	20250-21	181013163

P.O. Box 6948, Minneapolis MN 55406-0948

Prepared For: CEMCO

13191 Cross Road Parkway, Suite 325 City of Industry, CA 91746

Test Date: October 31, 2019

Report Date: December 19, 2019

Test Number: NOAL 19-1049

Page 5 of 9

APPENDIX B: CALCULATION RESULTS

Freq. Band (Hz)	Spec TL (dB)	Data Flags (see below)	95% C.I. (dB)	Flanking Limit (dB)	STC Deficiencies (dB)
25					
32					
40					
50	25.0	‡	±4.87	40	
63	28.9	‡‡	±4.55	45	
80	35.3	‡	±3.62	46	
100	42.0	§‡	±2.98	49	
125	44.7	§‡	±2.82	55	7
160	50.5	§‡	±2.62	58	5
200	54.2	§‡	±1.31	62	4
250	57.4	§‡	±1.33	65	4
315	60.1	§‡	±0.98	68	4
400	63.6	§‡	±0.52	71	3
500	65.9	§‡	±0.98	74	2
630	67.5	§‡	±0.78	76	2
800	69.9	§‡	±0.57	79	0
1000	74.0	§†	±0.56	81	0
1250	76.5	§‡	±0.64	84	0
1600	78.0	§†	±0.59	83	0
2000	75.7	§†	±0.62	82	0
2500	77.2	§‡	±0.57	86	0
3150	81.0	§‡	±0.55	90	0
4000	82.8	*§†	±0.79	89	0
5000	81.8	*§†	±1.22	86	
6300					
8000					
10000					
Total deficiencies below STC contour (dB)					31
STC contour [ASTM E413]					68

* Actual transmission loss of specimen may be higher than measured at this frequency band. Signal-to-noise in the receiving room less than 5 dB, therefore the result is "an estimate of the lower limit".

§ Actual transmission loss of specimen may be higher than measured at this frequency band. Result within 10 dB of flanking limit found in separate study, therefore the result may be "potentially limited by the laboratory" due to flanking around the specimen.

‡ Correction included in calculation due to a portion of the sound transmitted by way of the filler wall. Sound transmission through the filler wall is within correction limits established in ASTM E90.

† Actual transmission loss of specimen may be higher than measured at this frequency band. Sound transmission through the filler wall exceeds correction limits established in ASTM E90; therefore the result is "an estimate of the lower limit".

Note: 95% confidence intervals for TL measurements from room qualification data. ASTM E1289 reference sample and repeatability data available upon request. The standard deviation of reproducibility is stated in ASTM E90 as <2 dB for frequencies from 125 Hz to 4 kHz. Flanking Limit derived from chamber flanking study. Extended frequency results below 80Hz and above 5000Hz are for reference only.

P.O. Box 6948, Minneapolis MN 55406-0948

Prepared For: CEMCO

13191 Cross Road Parkway, Suite 325 City of Industry, CA 91746

Test Date: October 31, 2019

Report Date: December 19, 2019

Test Number: NOAL 19-1049

Page 6 of 9

APPENDIX C: SPECIMEN ASSEMBLY DESCRIPTION

Overall Mass 966.4 lb [438.4 kg]

Surface Weight 10.1 PSF [49.1 kg/m²]

Building Element	Mass lb [kg]	Surface Weight PSF [kg/m ²]
5/8" Type X gypsum wallboard (vs); 1.625" #6 type S screws spaced 12" OC at perimeter except top and 16" OC in field	214.4 [97.3]	2.23 [10.90]
5/8" Type X gypsum wallboard (v); 1" #6 type S screws spaced 8" OC at perimeter except top and 12" OC in field	213.6 [96.9]	2.23 [10.86]
Double row 2-1/2" CEMCO Viper-X (VXS) 18 mil (20 EQ) studs (1" AS) spaced 24" OC	68.2 [30.9]	0.71 [3.47]
Double layer 3-1/2" fiberglass insulation batts (R13)	45.2 [20.5]	0.47 [2.30]
5/8" Type X gypsum wallboard (vs); 1" #6 type S screws spaced 8" OC at perimeter except top and 12" OC in field	212.0 [96.2]	2.21 [10.78]
5/8" Type X gypsum wallboard (v); 1.625" #6 type S screws spaced 12" OC at perimeter except top and 16" OC in field	213.0 [96.6]	2.22 [10.83]

CEMCO HOTROD XL fire-rated wall mount deflection bead at sample top on both source and receiver side
No other seals/sealant used at sample top.

All materials were weighed prior to installation. Weights of fasteners, tape and sealant are not represented in the above totals.

P.O. Box 6948, Minneapolis MN 55406-0948

Prepared For: CEMCO

13191 Cross Road Parkway, Suite 325 City of Industry, CA 91746

Test Date: October 31, 2019

Report Date: December 19, 2019

Test Number: NOAL 19-1049

Page 7 of 9

APPENDIX C: SPECIMEN ASSEMBLY DESCRIPTION (CONTINUED)

CEMCO steel tracks, CEMCO steel studs, CEMCO HOTROD XL and gypsum wallboard panels were supplied by the Client. All other materials were purchased through regional retail or wholesale channels.

FRAMING

Framing was constructed on 10-30-19 and was retained from previous tests in the series.

A double stud frame was constructed within the perimeter of the laboratory test specimen opening. The frame consisted of two rows of CEMCO Viper-X (VXS) 18 mil designated thickness (20EQ) 2-1/2" bottom track with 1-1/4" flange, two rows of CEMCO (CST), 33 mil designated thickness (20 ga.) 2-1/2" x 2-1/2" top tracks and two rows of seven 2-1/2" x 1-7/16" CEMCO Viper-X (VXS) 18 mil designated thickness (20EQ) studs installed 24" on center (OC). The two rows of studs were separated by a 1" air space. The bottom tracks and studs were fastened together with two 7/16" #7 type S screws at bottom, outside corner intersections. The perimeter of the frame sides and bottom was sealed at the specimen opening with non-hardening acoustic sealant.

CEMCO bottom tracks: 250CT125-18 NS G40 33 ksi
CEMCO top tracks 250CST250-33 G40 33 ksi
CEMCO Viper-X Studs: 250VXS144-18 NS G40 57 ksi

INSULATION

Two layers of fiberglass insulation batts were friction fit into the stud cavities. The batts were 24" wide and 3 1/2" thick with an R-Value of R-13.

SHEATHING

Source Side:

Two layers of gypsum panels were applied to the source room side of the framing.

Base layer: 5/8" Type X gypsum wallboard panels were applied parallel to the studs. A 3/4" high (max) deflection gap was left at the top of the wallboard. The panels were attached to the frame with 1", #6 type S drywall screws at 8" OC at the perimeter and 12" OC in the field, except at the top track where no fasteners were used.

Face layer: 5/8" Type X gypsum wallboard panels were applied parallel to the studs. A 3/4" high (max) deflection gap was left at the top of the wallboard. The panels were attached to the frame with 1 5/8", #6 type S drywall screws at 12" OC at the perimeter and 16" OC in the field, except at the top track where no fasteners were used. Joints were staggered one cavity as to offset on each layer.

The deflection gap between the specimen opening and the top edge of the face layer of gypsum panels was fitted with Hotrod XL fire-rated wall mount deflection bead. The Hotrod XL was stapled to the wallboard and was covered (below the deflection gap) with 20-minute joint compound over the perforated mud leg.

P.O. Box 6948, Minneapolis MN 55406-0948

Prepared For: CEMCO

13191 Cross Road Parkway, Suite 325 City of Industry, CA 91746

Test Date: October 31, 2019

Report Date: December 19, 2019

Test Number: NOAL 19-1049

Page 8 of 9

Receiver Side:

Two layers of gypsum panels were applied to the receiver room side of the framing.

Base layer: 5/8" Type X gypsum wallboard panels were applied parallel to the studs. A 3/4" high (max) deflection gap was left at the top of the wallboard. The panels were attached to the frame with 1", #6 type S drywall screws at 8" OC at the perimeter and 12" OC in the field, except at the top track where no fasteners were used. Joints were staggered one cavity as to offset on opposite sides.

Face layer: 5/8" Type X gypsum wallboard panels were applied parallel to the studs. A 3/4" high (max) deflection gap was left at the top of the wallboard. The panels were attached to the frame with 1 5/8", #6 type S drywall screws at 12" OC at the perimeter and 16" OC in the field, except at the top track where no fasteners were used. Joints were staggered one cavity as to offset on each layer.

The deflection gap between the specimen opening and the top edge of the face layer of gypsum panels was fitted with Hotrod XL fire-rated wall mount deflection bead. The Hotrod XL was stapled to the wallboard and was covered (below the deflection gap) with 20-minute joint compound over the perforated mud leg.

The panels were shimmed at installation so equal gaps were maintained at the sides and bottom. Gaps were less than 3/8" in all cases except the top where the 3/4" deflection gap was left. Shims were removed after the panels were fastened and the sides, bottom and seams were sealed on the source and receiving room sides with non-hardening acoustical sealant. In addition, the perimeter of both sides of the specimen was sealed with 2" wide polypropylene tape and 7/8" dense putty tape, except the top which was sealed on the source and receiver only with the HOTROD XL.

P.O. Box 6948, Minneapolis MN 55406-0948

Prepared For: CEMCO

13191 Cross Road Parkway, Suite 325 City of Industry, CA 91746

Test Date: October 31, 2019

Report Date: December 19, 2019

Test Number: NOAL 19-1049

Page 9 of 9

APPENDIX D: SINGLE-NUMBER CALCULATION TO ISO 717-1

Freq. Band (Hz)	R_i (R_i ≡ TL) (dB)	Adj. Ref. Curve (dB)	Unfav. Deviat. (dB)	L_{i1} Spectrum (dB)	L_{i1} - R_i Level (dB)	L_{i2} Spectrum (dB)	L_{i2} - R_i Level (dB)	
50	25.0							
63	28.9							
80	35.3							
100	42.0	48	6.0	-29.0	-72.0	-20.0	-62.0	
125	44.7	51	6.3	-26.0	-71.7	-20.0	-64.7	
160	50.5	54	3.5	-23.0	-74.5	-18.0	-68.5	
200	54.2	57	2.8	-21.0	-76.2	-18.0	-72.2	
250	57.4	60	2.6	-19.0	-77.4	-15.0	-72.4	
315	60.1	63	2.9	-17.0	-78.1	-14.0	-74.1	
400	63.6	66	2.4	-15.0	-79.6	-13.0	-76.6	
500	65.9	67	1.1	-13.0	-79.9	-12.0	-77.9	
630	67.5	68	0.5	-12.0	-80.5	-11.0	-78.5	
800	69.9	69	0.0	-11.0	-81.9	-9.0	-78.9	
1000	74.0	70	0.0	-10.0	-85.0	-8.0	-82.0	
1250	76.5	71	0.0	-9.0	-86.5	-9.0	-85.5	
1600	78.0	71	0.0	-9.0	-88.0	-10.0	-88.0	
2000	75.7	71	0.0	-9.0	-85.7	-11.0	-86.7	
2500	77.2	71	0.0	-9.0	-87.2	-13.0	-90.2	
3150	81.0	71	0.0	-9.0	-91.0	-15.0	-96.0	
4000	82.8							
5000	81.8							
Sum =		28.1	R _{A,1} =		64.6	R _{A,2} =		58.7
R _w =		67	C =		-2	C _{tr} =		-8

$$R_w (C ; C_{tr}) = 67 (-2 ; -8)$$

$$R_w (C ; C_{tr} , C_{50-3150} ; C_{tr,50-3150}) = 67 (-2 ; -8 ; -8 ; -20)$$

$$R_w (C ; C_{tr} ; C_{100-5000} ; C_{tr,100-5000}) = 67 (-2 ; -8 ; -1 ; -8)$$

$$R_w (C ; C_{tr} ; C_{50-5000} ; C_{tr,50-5000}) = 67 (-2 ; -8 ; -7 ; -20)$$

Calculations according to the standard ISO 717-1 are based on an assumed equivalency of the ASTM and the corresponding ISO test methods. NOAL's scope of accreditation includes ASTM E90 and the test herein is performed according to this standard as described, but NOAL does not hold accreditation for the corresponding ISO standards.

The spectrum adaptation terms C and C_{tr} characterize performance against two specific sound sources, A-weighted pink noise and A-weighted traffic noise respectively. The standard ISO 717-1 includes a discussion of "Use of Spectrum Adaptation Terms" in Annex A (informative).

Each spectrum adaptation term may additionally be reported with extended frequency bands included. The calculation above represents the primary frequency range. The results below the table show the calculated primary ratings as well all available extended-frequency ratings, so that this specimen may be compared against corresponding ratings of other specimens.