

SOUND TRANSMISSION LOSS TEST REPORT NO. TL17-430

CLIENT: **CEMCO**
263 N Covina Lane
City of Industry, CA 91744

TEST DATE: 24 August 2017

16 October 2017

INTRODUCTION

The test was performed in accordance with ASTM E 90-09 (2016), *Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions* and ASTM E2235-04 (2012), *Standard Test Method for Determination of Decay Rates for Use in Sound Insulation Test Methods*. Copies of the test standard are available at www.astm.org. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively.

Western Electro-Acoustic Laboratory is accredited by the United States Department of Commerce, National Institute of Standards and Technology under the National Voluntary Accreditation Program (NVLAP) Lab Code 100256-0 for this test procedure. This test report relates only to the item(s) tested. This report must not be used to claim product certification, approval, or endorsement by WEAL, NVLAP, NIST or any agency of the federal government.

DESCRIPTION OF TEST SPECIMEN

The test specimen was a double wall assembly constructed from 51 mm (2-1/2 inch) CEMCO Viper-X 18 mils (20EQ) metal studs with CEMCO TAB TRACK 33 MIL and R-11 fiberglass insulation in the stud cavity, CEMCO HOTROD Type X compressible intumescence firestop at the top of the wall without joint compound, and National Gypsum Gold Bond® Fire-Shield® Gypsum Board.

TEST CONFIGURATION

Layers Source Room Side	Source Room Stud and Insulation	Air Gap	Source Room Stud and Insulation	Layers Receiving Room Side
1 layer 16 mm (5/8 inch) National Gypsum Gold Bond® Fire-Shield® Gypsum Board with CEMCO HOTROD Type X Compressible Firestopping without joint compound	51 mm (2-1/2 inch) CEMCO Viper-X 18 mils (20EQ) with CEMCO TAB TRACK 33 MIL with R-11 Fiberglass	25.4 mm (1 inch)	51 mm (2-1/2 inch) CEMCO Viper-X 18 mils (20EQ) with CEMCO TAB TRACK 33 MIL with R-11 Fiberglass	1 layer 16 mm (5/8 inch) National Gypsum Gold Bond® Fire-Shield® Gypsum Board with CEMCO HOTROD Type X Compressible Firestopping without joint compound

- The metal studs were spaced at 610 mm (24 inches) on center (O.C.). The studs and track were isolated around the perimeter from the test chamber opening with 6 mm (1/4 inch) neoprene pads.
- On the source room side, one layer of 16 mm (5/8 inch) National Gypsum Gold Bond® Fire-Shield® Gypsum Board was screwed 203 mm (8 inches) O.C. around the perimeter and 305 mm (12 inches) in the field.
- On the receiving room side, one layer of 16 mm (5/8 inch) National Gypsum Gold Bond® Fire-Shield® Gypsum Board was screwed 203 mm (8 inches) O.C. around the perimeter and 305 mm (12 inches) in the field.
- Along the top of the receiving gypsum board layer, a 19 mm (3/4 inch) gap was filled with HOTROD Type X Compressible Firestopping. The optional joint compound was not used.
- All gypsum board was oriented vertically and the joints were staggered on opposite sides of the wall. All the joints, with the exception top of wall joint in both the source and receiving rooms, were sealed with a bead of latex caulking and metal foil tape. All screw heads were covered with metal foil tape.
- The overall dimensions of the wall assembly were 2.44 m (96 inches) wide by 2.44 m (96 inches) high by 184 mm (7-1/4 inches) thick.
- The overall weight of the assembly was estimated to be 164 kg (362 lbs.) for a calculated surface density of 27.6 kg/m² (5.7 lbs./ft²).

WESTERN ELECTRO - ACOUSTIC LABORATORY

A division of Veneklasen Associates, Inc.

T E S T I N G

• C A L I B R A T I O N

• R E S E A R C H

25132 Rye Canyon Loop Santa Clarita, California 91355 Tel: (661) 775-3741 Fax: (661) 775-3742 www.weal.com

SOUND TRANSMISSION LOSS TEST REPORT NO. TL17-430

CLIENT: **CEMCO**
263 N Covina Lane
City of Industry, CA 91744

TEST DATE: 24 August 2017

16 October 2017

RESULTS OF THE MEASUREMENTS

One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Outdoor-Indoor Transmission Class rating determined in accordance with ASTM E 1332-10a was OITC-44. The Sound Transmission Class rating determined in accordance with ASTM E 413-10 was STC-60.

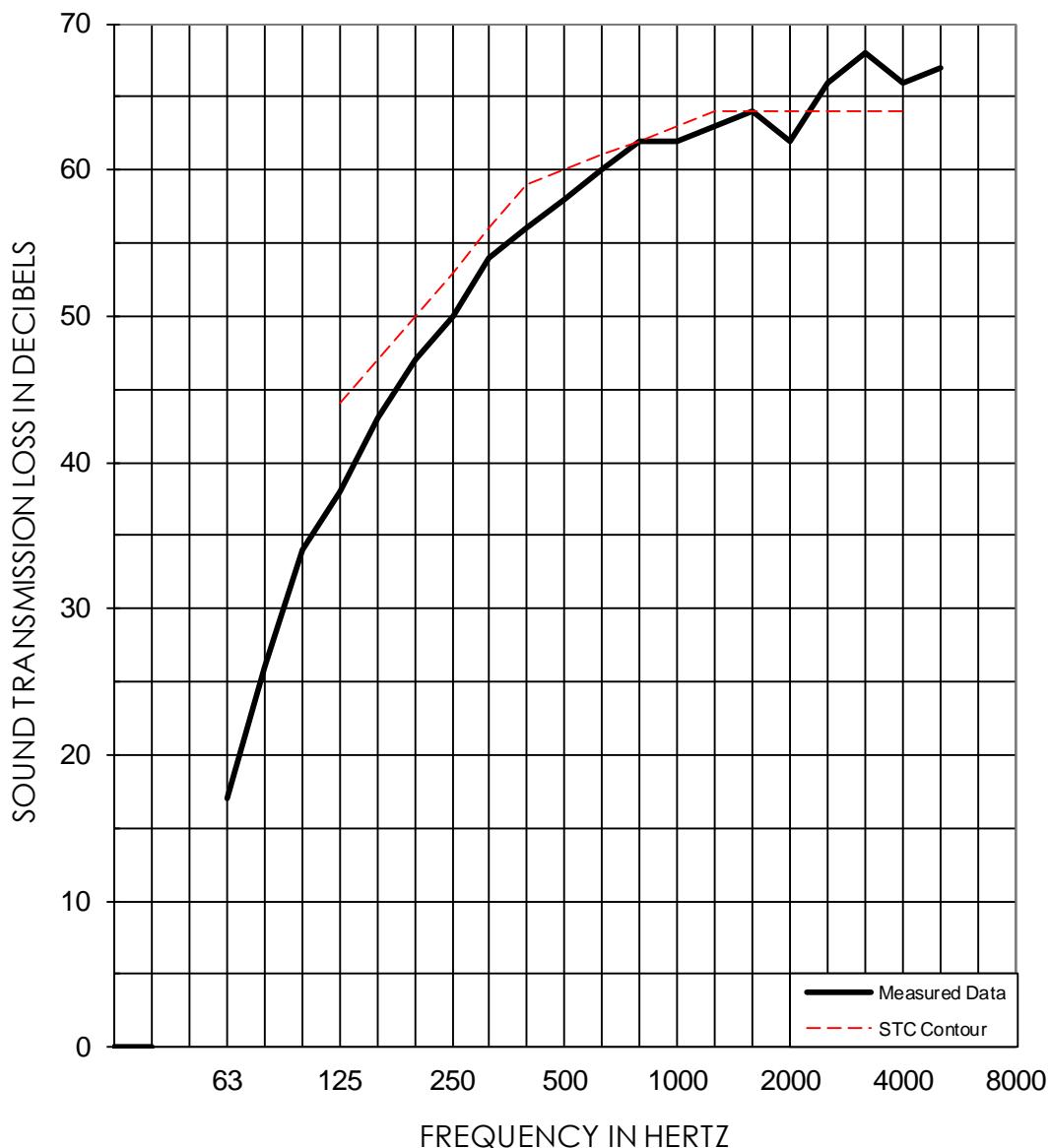
Approved:

Respectfully submitted,
Western Electro-Acoustic Laboratory

Stephen A. Martin, Ph.D., P.E.
Laboratory Director

Raul Martinez
Acoustical Test Technician

Report must be distributed in its entirety except with written permission from Western Electro-Acoustic Laboratory


Page 2 of 3

NVLAP LAB CODE 100256-0

WESTERN ELECTRO-ACOUSTIC LABORATORY

Report No. TL17-430

1/3 OCT BAND CNTR FREQ		63	80	100	125	160	200	250	315	400	500
TL in dB		17	26	34	38	43	47	50	54	56	58
95% Confidence in dB deficiencies		1.42	1.92	2.07	1.47	0.89	0.76	0.80	0.52	0.36	0.38
1/3 OCT BAND CNTR FREQ		630	800	1000	1250	1600	2000	2500	3150	4000	5000
TL in dB		60	62	62	63	64	62	66	68	66	67
95% Confidence in dB deficiencies		0.29	0.44	0.38	0.39	0.36	0.56	0.55	0.31	0.32	0.50
EWR	OITC	Test Date: 24 August 2017 Specimen Area: 64 sq.ft. Temperature: 72.5 deg. F Relative Humidity: 40 %								STC	
60	44									60	(28)

Report must be distributed in its entirety except with written permission from Western Electro-Acoustic Laboratory

Page 3 of 3