

Expanding Your Solutions

Corporate Headquarters

13191 Crossroads Pkwy N., Ste 325 City of Industry, CA 91746 Phone: 800.775.2362

Fax: 626.330.7598 www.cemcosteel.com

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

www.cemcoengineering.com

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 Phone: 800.775.2362 Fax: 626.330.7598

Technical Services

13191 Crossroads Pkwy N., Ste 325 City of Industry, CA 91746 Phone: 800.416.2278 Fax: 626.249.5004

800S200-68 C-STUD 68 MIL (14 GA. STRUCTURAL)

Geometric Properties

800S200-68 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard CP60 coating. CP90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)	
800S200-68	0.0713	0.0677	50	CP60	8	2	5/8	

Notes:

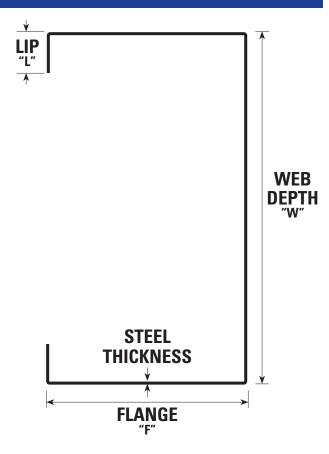
- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. CP90 available upon request. Will require extended lead time and upcharge.

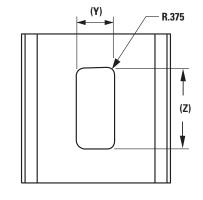
Color Code (painted on ends): 68-mil: Orange

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016
- ATI CCRR-0224
- IBC: 2012, 2015, 2018
- CBC: 2013, 2016
- AISI: S100-07, S100-12, S100-16, S200-12, S240-15

LEED v4 for Building and Design Construction


- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients, Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.


CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

■ Total Recycled Content: 36.9%

■ Post-Consumer: 19.8% ■ Pre-Consumer: 14.4%

CSI Division: 05.40.00 – Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)		
2-1/2" studs	2.000	0.750		
3-1/2" to 14" studs	3.250	1.500		

800S200-68 Section Properties

Design	Ev		Gross ² Effective Properties ² Torsional Prop						Propertie	S	1								
Thickness (in.)	ess (ksi)	lx (in ⁴)	Sx (in³)	Rx (in)	ly (in ⁴)	Ry (in)	lx (in ⁴)	Sx (in³)	Ma (in-k)	Vag (lb)	Vanet (lb)	Mad (in-k)	Jx1000 (in ⁴)	Cw (in ⁶)	Xo (in)	m (in)	Ro (in)	ß	(in)
0.0713	50	8.140	2.035	2.996	0.435	0.692	8.140	1.964	65.21	4221	3367	54.62	1.537	5.712	-1.248	0.796	3.319	0.859	38.4

Notes: 1. Web depth for track sections equals nominal depth plus 2 times the design thickness plus bend radius. 2. The values are for members with punch-outs. 3. Gross properties are based on the full, unreduced cross-section, away from web punchouts. 4. Use the effective moment of inertia for deflection calculation. 5. Allowable moment is lesser of Ma and Mad. Distortional buckling is based on an assumed $K\phi = 0$. **6.** These members are available un-punched only.

12-04-18 AT