

Expanding Your Solutions

Corporate Headquarters

13191 Crossroads Pkwy N., Ste 325 City of Industry, CA 91746 Phone: 800.775.2362

Fax: 626.330.7598 www.cemcosteel.com

Manufacturing Facilities

City of Industry, CA Denver, CO Ft. Worth, TX Pittsburg, CA

Structural Engineering/Design

www.cemcoengineering.com

1001-A Pittsburgh Antioch Hwy Pittsburg, CA 94565 **Phone:** 800.775.2362 **Fax:** 626.330.7598

Technical Services

13191 Crossroads Pkwy N., Ste 325 City of Industry, CA 91746 Phone: 800.416.2278 Fax: 626.249.5004

250S162-97 C-STUD 97 MIL (12 GA. STRUCTURAL)

Geometric Properties

250S162-97 "S" structural load-bearing studs are produced from hot-dipped galvanized steel in standard CP60 coating. CP90 is available upon special request, and may require up-charges and extended lead times.

Physical Properties

Model No.	Design Thickness (in)	Minimum Thickness (in)	Yield (ksi)	Coating ^{3,4}	Web Depth (in)	Flange Size (in)	Lip (in)	
250S162-97	0.1017	0.0966	50	CP60	2-1/2	1-5/8	1/2	

Notes:

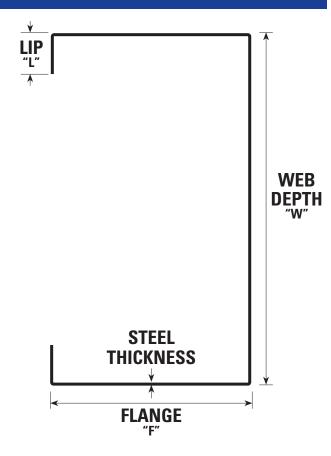
- 1. Uncoated steel thickness. Thickness is for carbon sheet steel.
- 2. Minimum thickness represents 95% of the design thickness and is the minimum acceptable thickness.
- 3. Per ASTM C955 & A1003, Table 1.
- 4. CP90 available upon request. Will require extended lead time and upcharge.

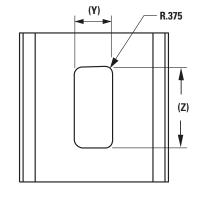
Color Code (painted on ends): 97-mil: Red

ASTM & Code Standards:

- ASTM A653/A653M, A924/A924M, A1003/1003, C955 & C1007
- ICC-ES & SFIA Code Compliance Certification Program
- ICC ESR-3016
- ATI CCRR-0224
- IBC: 2012, 2015, 2018
- CBC: 2013, 2016
- AISI: S100-07, S100-12, S100-16, S200-12, S240-15

LEED v4 for Building and Design Construction


- MR Prerequisite: Construction and Demolition Waste Management Planning.
- MR Credit: Construction and Demolition Waste Management.
- MR Credit: Building Product Disclosure and Optimization Sourcing of Raw Materials, Option 2.
- MR Credit: Building Product Disclosure and Optimization Environmental Product Declarations, Options 1 & 2.
- MR Credit: Building Product Disclosure and Optimization Material Ingredients. Option 1.
- MR Credit: Building Life-Cycle Impact Reduction, Option 4.


CEMCO cold-formed steel framing products contain 30% to 37% recycled steel.

- Total Recycled Content: 36.9%
- Post-Consumer: 19.8% Pre-Consumer: 14.4%

■ 11e-Guisumer. 14.4 /0

CSI Division: 05.40.00 – Cold-Formed Metal Framing

Hole Detail

Standard Hole Centers are 24"	(Z) (in)	(Y) (in)		
2-1/2" studs	2.000	0.750		
3-1/2" to 14" studs	3.250	1.500		

250S162-97 Section Properties

Design Thickness (in.)	Eu	Gross ³					Effective Properties ²						Torsional Properties						Lu
	(ksi)	lx (in ⁴)	Sx (in³)	Rx (in)	ly (in ⁴)	Ry (in)	lx (in ⁴)	Sx (in³)	Ma (in-k)	Vag (lb)	Vanet (lb)	Mad (in-k)	Jx1000 (in ⁴)	Cw (in ⁶)	Xo (in)	m (in)	Ro (in)	ß	(in)
0.1017	50	0.596	0.477	0.989	0.209	0.586	0.596	0.477	16.93	3798	429	16.91	2.102	0.346	-1.386	0.815	1.801	0.408	33.5

Notes: 1. Web depth for track sections equals nominal depth plus 2 times the design thickness plus bend radius. 2. The values are for members with punch-outs. 3. Gross properties are based on the full, unreduced cross-section, away from well

punchouts. **4.** Use the effective moment of inertia for deflection calculation. **5.** Allowable moment is lesser of Ma and Mad. Distortional buckling is based on an assumed $K\phi = 0$. **6.** These members are available un-punched only.

Check the updated list of Certified Production